Model Aircraft Setup & Trimming
Basic

Roger Hammel - September 9, 2008
Goals of Setup & Trimming

• Basic
 • Hands off – straight & level flight
 • Predictability & repeatability
 • Control – enough stability balanced w/ desired maneuverability. Minimize pilot “corrections”
 • No adverse & unpredictable aircraft actions & behaviors
 • Cost balance with performance & weight

• Advanced
 • Aerobatic – non-level flight – maneuvering
 • Deal with “coupling” issues
 • Special Cases

• Other ??

• Inescapable conclusions –
 • No single “right” answers
 • Someone always knows more than you do
 • There is usually a different way of viewing the problem
Setup & Trimming Scope

• What is included in setup & trimming?
 • Alignment
 • Power vs. Weight & prop
 • CG Location
 • Incidences
 • Control Surfaces
 • Thrustline Settings
 • Computer Radio Capabilities
 • Dual Rates
 • Exponential
 • Mixes
 • Flight testing from Maiden Flight

• When does setup & trimming start?

• When does setup & trimming stop?
Tools of the Trade

• General – calculator, plane stand, soft shims, & O.F.K.
• Alignment - cut corner triangles, string, tape, pins & ruler
• Powerplant & prop – scales, tach, pitchmeter, ruler
• CG position – balancing “machine”
• Wingloading – scales & ruler
• Control Surfaces – throwmeter, pointer sticks
• Servos – servo tester/programmer, pointer
• Incidences – incidence gauges
• Thrustline – reference plane, ruler, incidence meter,
O.F.K. = Other Folks Knowledge

- AMA http://www.modelaircraft.org/
- AMA Special Interest Groups
 - NSRCA - http://nsrca.us/
 - IMAC - http://www.mini-iac.com/
- AMA R/C Clubs & Club members
- Online Groups & Forums
 - RC Universe http://www.rcuniverse.com/
 - RC Groups http://www.rcgroups.com/
 - E-Zone http://www.ezonemag.com/
 - Wattflyer http://www.wattflyer.com/forums/
 - Flying Giants http://www.flyinggiants.com/
- Monthly Publications
 - AMA’s Model Aviation
 - RC Reports
 - Quiet Flyer
- Books
 - Mastering Radio Control Flight – Scott Stoops
 - Several 1st US Flight School Books – David A Scott
 - 3 Books by Don Apostolico: Proficient Flying, Crosswind Flying, Gas Engines & Giant Planes
- Other interesting sites
 - Airfoil simulator - http://www.grc.nasa.gov/WWW/K-12/airplane/foil2.html
Setup Details

- **Alignment**
- Power vs. Weight & Prop
- CG Location
- Incidences
- Control Surfaces
- Thrustline Settings
- Computer Radio Capabilities
 - Dual Rates
 - Exponential
 - Mixes
- Flight Testing from Maiden Flight
Alignment

• Follow instructions, plans or manual !!!!

• Wings
 • Top View – square to fuselage center datum line (string method)
 • Front View – equal dihedral - left vs. right. Shim or recut fuselage side.
 • Side view (incidence) - covered later – Shim or recut fuselage side
 • Undesired & uneven warpage – Visually inspect, measure to reference plane (flat table) to discover Left vs. Right differences from warpage

• Tail Feathers
 • Horizontal Stabilizer –
 Top view – similar to wing
 Front View - Orthogonal to fuselage vertical plumbline. Cut corner triangle
 Side view - Incidence – (Covered later) shim or cut fuselage
 • Vertical Stabilizer -
 Top View – parallel to fuselage centerline. String & pin method
 Rear /Front View - Parallel to fuselage vertical plumbline

• Thrustline – Use manufacturers recommendations ... (covered later)
Setup Details

- Alignment
- **Power vs. Weight & Prop**
- CG Location
- Incidences
- Control Surfaces
- Thrustline Settings
- Computer Radio Capabilities
 - Dual Rates
 - Exponential
 - Mixes
- Flight Testing from Maiden Flight
Power & Powerplant vs. Weight & Prop selection

• Engine selection at heart of setup. May influence:
 • Aircraft weight & balance
 • Servo & equipment placement in airframe
 • Fuel load
 • Wallet load $$$
• Can you have too much power? 2 schools of thought:
 • No – power absolves all sins. 3D influence. Unlimited vertical. Macho.
 • Yes – Price of power \rightarrow weight \rightarrow balance \rightarrow more weight \rightarrow higher wingloading \rightarrow higher flying speed \rightarrow maneuverability penalty
 • More power @ same overall weight – almost always good. Duh!
• Decision?
 • Individual preferences dictate. No “right” answer for all cases.
 • What is your flying style??
 • Caution: Manufacturer’s suggestions may often result in underpowered plane.
 • Suggest consulting O.F.K. But with large dose of caution.
 • Personal examples – UltraStick 40, UCD46; Venus II.
• Propeller considerations
 • Fly style - 3D, Funfly \rightarrow lower pitch larger diameter;
 -Sport & Aerobatics \rightarrow higher pitch smaller diameter.
 • Determine engine manufacturer prop recommendations
 • Match pitch speed of prop with speed expectations for plane
 Pitch Speed (mph) = Krpm x pitch (inches) x .95
 • For equivalent loads on motor from different props - consult Jim/Arlen’s propload calculator formula. Rough rule of thumb \rightarrow Change of 1” D = 2” pitch
 • Consider drag characteristics of airframe
 • Prop changes \rightarrow unanticipated effects & coupling during aerobatics
Setup Details

• Alignment
• Power vs. Weight & Prop
• **CG Location**
• Incidences
• Control Surfaces
• Thrustline Settings
• Computer Radio Capabilities
 • Dual Rates
 • Exponential
 • Mixes
• Flight Testing from Maiden Flight
Stability - Primer

- **Stability** = ability of an aircraft to return to original position if involuntarily displaced
 - Natural restorative force counteracting involuntary position or movement
 - Gravity action
 - Aerodynamic
 - Stability vs. Maneuverability - inversely proportional

- **Keys**:
 - **Pitch stability** - Horizontal Cp aft of CG (Aerodynamic - dart) – Can be “fatal” if not followed
 - Yaw stability – Vertical Cp aft of CG (Aerodynamic - dart) – Can be “fatal” if not followed
 - Roll stability – Horizontal Cp above Cg (Gravity - pendulum), Dihedral (aerodynamic) – Usually can “live with instability” via aileron corrections.
Optimal CG location:
It’s all just a matter of balance...

• CG location
 • CAVEAT - “Nose heavy planes fly poorly, tail heavy planes fly once…”
 • Acceptable CG must be in front of Cp for unassisted stable flight – dart analogy
 CG – not single “point”, rather “range” of acceptable “points”, all with tradeoffs
 CG further aft, more maneuverable, less stable. Snaps & spins easier.
 CG further forward, less maneuverable, more stable. Axial rolls easier
 • Initial location: Consult plans & O.F.K. for CG location inputs. Helpful website:
 http://www.geistware.com/rcmodeling/cg_super_calc.htm
 • Other Rules of thumb
 Initial CG at “thickest” part of wing, often on spar or slightly forward
 Initial CG range – 25% to 35% M.A.C. 25% is safer
 Cp of wing (only) usually about 25% chord. Cp of horizontal stab @25% stab chord.
 Overall Cp → relative surface areas of stab vs. wing & distance between them
 Large horizontal tail feathers vs. wing → more rearward CG allowable
 Long tail moment arm distance → more rearward CG allowable
 High “normal” throws → more conservative (forward) initial CG
 • Flying style influences choice –
 3D – well toward tail heavy (helps “stalled flight” maneuvers)
 Pattern – neutral to slightly tail heavy
 Sport – neutral to slightly nose heavy
 Trainers – nose heavy (safe)
 • KEY - Plan for CG adjustments. Move components vs. add weight.
• The model should balance OK before flight trimming starts. Lateral balance too.
• Iterative process - If CG changed, other trim parameters must be rechecked.
• Flight testing – Test-in “right” CG (close) first.
Optimal CG location: Testing Methods

• Flying tests for approximate CG location (assumes proper wing incidence, horizontal stab incidence & thrustline setup). ...Iterative process....
 • Roll into inverted flight at cruise speed
 a) Considerable “push” of elevator required for level flight → nose heavy
 b) If any pull is required → tail heavy (assuming no excessive downthrust)
 c) No pull or push → slightly tail heavy, may be OK for some fliers
 d) If slight push is required, balance is close
 • Roll into vertically banked turn at cruise speed, neutral rudder.
 a) If model drops nose first → nose heavy
 b) If model drops tail first → tail heavy
 c) If model drops approximately level, balance is close

• CG location refinement & optimization
 • Advanced flight tests for CG involve advanced aerobatic maneuvers e.g. long downlines, Knife Edge flight, snaps & spins; for 3D - use stalled flight maneuvers (e.g. hovers, harriers, flatspins.)
 • Ultimate CG determination is an iterative process of testing and personal preferences.
 • Some fliers use 2 different CG locations, one for aerobatic flight, and a more rearward CG for 3D flight.
Setup Details

- Alignment
- Power vs. Weight & Prop
- CG Location
- **Incidences**
 - Control Surfaces
 - Thrustline Settings
 - Computer Radio Capabilities
 - Dual Rates
 - Exponential
 - Mixes
- Flight Testing from Maiden Flight
Wing Incidence Settings

- Lift vs. Angle of Attack (see David Scott of “1st US Flight School” pic source)
 - “Angle of attack” is wing angle relative to airflow using “zero lift” line as reference
 - KEY - All airfoils need a positive angle of attack (measured from ZLL) to produce lift
 - Angle of attack achieved one of two ways:
 - Wing/stab at 0/0. Thus elevator “+” trim necessary – plane is pitched nose up to achieve sufficient pos. angle of attack
 - Positive wing incidence - 1/2 degree to 1 degree, horizontal stab at 0 (neutral)
 - Significant number of ARFs designed with 0 wing incidence & 0 stab incidence.
 - Fly & try. If negatively stable, consider adjusting wing incidence via shims or redoing fuselage wing cutouts.

![Diagram of wing incidence settings]
Setup Details

• Alignment
• Power vs. Weight & Prop
• CG Location
• Incidences
 • Control Surfaces
 • Thrustline Settings
 • Computer Radio Capabilities
 • Dual Rates
 • Exponential
 • Mixes
 • Flight Testing from Maiden Flight
Control Surfaces

• Control Surface - Throws vs. Size
 • Throws - Use manufacturer recommendations & OFK inputs
 • Larger control surfaces need smaller throws for precision flight.
 • Start with low throws and increase after initial flights
 • Caution: Large aileron throws especially with large ailerons \(\rightarrow\) crash waiting to happen

• Hinges: Hinge lines - straight and centered on the surface
• Pivot Point of Control Horns: Control horns setup with pivot point of horn exactly on the hinge line to avoid accidentally building in a differential.
• Servo Arms: The arm on the servo should be exactly parallel to the hinge line. Servo arms should be switched around until you get the spline alignment correct.
• Servos: Select quality servos of sufficient torque. Test & match for best setups. Centering is critical.
• Subtrims are for fine tuning only. Do NOT use the radio “sub trims” or fine tuning to center the servos more than a couple of degrees !!!
• Hinge lines should be sealed so no air can pass through.
• Eliminate slop & “play”. Minimize pushrod slop. Do not oversize holes. Use high quality ball link attachments and machined aluminum servo arms for the best setups.
• Aileron & Elevator Setup - Mechanically adjust linkages so that ailerons & elevators are perfectly centered and get only the maximum throw recommended by the manufacturer. Equal up and down.
• Rudder setup – Achieve maximum available throw for rudder. Secure mechanical advantage to ensure good resolution and power
Setup Details

• Alignment
• Power vs. Weight & Prop
• CG Location
• Incidences
• Control Surfaces
• **Thrustline Settings**
 • Computer Radio Capabilities
 • Dual Rates
 • Exponential
 • Mixes
• Flight Testing from Maiden Flight
Engine Thrustline Settings

• Thrustline - typically need slight down-thrust and right-thrust
 • Issues appear most often in high power but low speed flight situations
 • Takeoffs, stall turns, tops of loops & Immelmann’s, Cuban Turnaround Uplines
 • Caused by combination of slipstream & P factor effects
 • Sometimes excess wing incidence (down-thrust correction) at high speeds

• Initial Thrustline settings
 • Use manufacturer’s suggested settings
 • OPK inputs with large degree of caution & discretion.
 • Default – Right-thrust 1 to 2 degrees, down-thrust 1 to 2 degrees then test.

• Flight Testing Thrustline settings – Thrust controls uplines
 • Do after CG is established as “close” & wing incidences are set “close”
 • Initial flights good to do without cowl till settings verified. Access & adjustment issue.
 • Wings level, moderate speed directly into wind, pull up hold power. Observe changes as plane slows toward top half of upline. Repeat with the wind.
 • Plane tucks to belly, \(\rightarrow\) reduce down-thrust
 • Plane pulls to canopy \(\rightarrow\) increase down-thrust
 • Plane pulls to left \(\rightarrow\) increase right-thrust, also possible down-thrust increase
 • Plane pulls to right \(\rightarrow\) reduce right thrust
 • Results may change if props are changed. Retest & verify.
 • Large down & right thrustlines settings different from 1,1 or 2,2 degrees \(\rightarrow\) may indicate other issues. Retest & verify, recheck for other causes - e.g. incidences.
 • High speed straight level flight directly into wind – quickly cut throttle. Observe plane.
 • Significant flightpath changes may indicate “other” issues. Iterate other trimming steps & tests.
Setup Details

- Alignment
- Power vs. Weight & Prop
- CG Location
- Incidences
- Control Surfaces
- Thrustline Settings

Computer Radio Capabilities
- Dual Rates
- Exponential
- Mixes
- Flight Testing from Maiden Flight
Computer Radio Capabilities

- **Dual Rates**
 - USE dual rates.
 - Primary flying on low rates for precision
 - 3D maneuvers, possibly snaps & flatspins on higher rates.
 - High rate ailerons can quickly get you into trouble
- **Exponential**
 - Use judiciously
 - Low rates – small % EXPO. Must still feel the controls for smoothness
 - High rates – Larger % EXPO stops unwanted jerky movements
 - EXPO is NOT a substitute for precise stick movement & control
 - High rates + large % EXPO does not always make a smooth flier
- **Mixes**
 - Use to coordinate dual surfaces (slave) from one input (split elevators)
 - Use to correct unwanted flight & coupling issues if mechanical or aerodynamic changes not viable .(Mix out problems.)
 - Caution - Can cause unintended & unforeseen effects & consequences
Setup Details

• Alignment
• Power vs. Weight & Prop
• CG Location
• Incidences
• Control Surfaces
• Thrustline Settings
• Computer Radio Capabilities
 • Dual Rates
 • Exponential
 • Mixes

• Flight Testing from Maiden Flight
Maiden Flight
(...hope the plane don’t crash...)

• Ground check of controls & engine throttle.
• Takeoff & attain altitude
• Adjust Xmitter trims for straight & level flight.
 • Ailerons first. If OK proceed.
 • Elevator next If OK, proceed.
 • Vary throttle, does plane climb & dive? If OK, proceed.
• Low rates – are throws are sufficient, but not too much? If OK, proceed.
 • Rudder trim adjusting –
 • Straight into wind, wings perfectly level, good speed, pull vertical & observe.
 • Fly with tailwind, wings perfectly level, high speed, pull vertical & observe.
 • Repeat to verify. Any heading change or roll at outset? Trim rudder correction.
 • Optional - Loop straight into wind, wings level, see if corkscrewed. Trim rudder correction.
 • CG flight tests 1 & 2 (previously covered). Consistent results?
• Land & adjust
 • Measure deflections set & record.
 • Adjust trims mechanically (or with subtrims if deflections are small) to achieve same deflections recorded but w/ neutral trims
 • Fly and verify trim settings.
 • Adjust CG as necessary from tests. Test fly for results.
 • Readjust & test fly.
 • Test other parameters in flight. One change at a time. Test fly for results.
 • Iterate process